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Abstract—Low Earth Orbit satellite networks, as a crucial
component of global low-latency internet access, are expected
to carry significant user traffic in the future. Caching frequently
requested content, e.g., popular videos on short-video platforms,
in satellite networks can significantly alleviate traffic congestion.
However, the satellite’s brief overhead passing time, which is
less than ten minutes, makes it difficult for satellites to capture
the content popularity distribution. And the changing relative
position between satellites poses challenges for cooperation. To
address the challenges, we propose a method called SEC MAPPO
for deploying cooperative edge caching in satellite networks.
First, we model this novel scenario and transform it into
a Partially Observable Markov Decision Process (POMDP).
Then, we design a multi-agent reinforcement learning algorithm
specifically tailored for this scenario. Trace-driven simulation
using a real-world LEO satellite constellation and video request
dataset demonstrated that our proposed algorithm could achieve
a reduction in average video request latency ranging from 4.53%
to 9.31% compared to the baseline solutions.

Index Terms—LEO Satellite Network, Edge Caching, Multi-
Agent Deep Reinforcement Learning

I. INTRODUCTION

To accomplish the global seamless connection in the next
generation of mobile communication, the Low Earth Orbit
(LEO) satellite network is expected as the pivotal supple-
mentary to 6G architecture [1]. However, the proliferation
of content-rich applications, e.g., short-video platforms, has
contributed to a global surge in the quantity of data being
transmitted worldwide. Such a massive number of connections
and volume of network traffic are challenging the limited
communication resources in satellite networks. Edge caching
is a common technique to reduce latency and save commu-
nication resources by storing frequently requested contents at
the edge devices of the network. With the advancements in
satellite hardware storage technology, deploying edge comput-
ing and caching capability on satellites is becoming feasible
[2]. However, the high-speed movement of satellites and the
dynamic nature of network topology present obstacles to
implementing efficient edge caching on satellite networks. The
high-speed movement of satellites makes it difficult to capture
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the content popularity distribution within its coverage area.
Additionally, changing network topology poses a challenge to
maintaining stable data transmission links. These new features
make it infeasible to directly migrate terrestrial edge caching
algorithms to satellite networks.

Conventional rule-based caching methods, e.g., LFU, LRU,
ARC [3], have shown obvious performance degradation in
the LEO satellite edge caching scenario. As demonstrated in
works [4], [5], there exists a verifiable correlation between
the popularity distribution of contents and geographical lo-
cation. Consequently, the rapid motion of satellites makes it
difficult to perceive the content popularity distribution as the
coverage area remains changing. To improve edge caching
performance on satellite networks, the work [6] considers the
cache placement and content delivery strategy in satellite-
terrestrial integrated cloud radio access networks composed
of a single LEO satellite and multiple base stations. The work
[7] proposes a three-layer cooperative caching model involving
base stations, satellites, and the gateway to improve cache hit
rate through cooperative caching but neglects the dynamic of
the satellite networks and the cache efficiency. Due to the
limited storage capacity of each individual satellite, the per-
formance of edge caching methods based on a single satellite
is often constrained. The work [8] takes the LEO satellite’s
movement into account and proposes a collaborative edge
caching algorithm named CACVC to encourage cooperation
among satellites in the same orbit. Although this work has
considered the cooperation between satellites, the potential for
cooperation between satellites across different orbit planes is
ignored.

To improve the collaborative edge caching between satellites
in multiple orbit planes, this paper proposes an innovative
satellite edge caching strategy, named SEC MAPPO, based on
the Multi-Agent Proximal Policy Optimization algorithm [9].
The algorithm follows a “centralized training, decentralized
execution” framework. In the training phase, the global critic
model assesses the joint actions of each agent to encour-
age collaboration. Specifically, our proposed algorithm aims
to enhance storage capacity utilization by encouraging each
satellite to cache different contents as far as possible. In the
execution phase, each satellite independently makes decisions
based on its local observations. At last, the efficacy of the
proposed algorithm is validated through experiments using



real-world constellation information and widely used video
request datasets. The principal contributions of this paper are
threefold:

▷ To address the issue of redundant cached content among
high-speed moving LEO satellites, we have designed a coop-
erative caching model for satellites. Aiming to minimize the
average request latency, we have formulated the problem as a
nonlinear integer programming problem.

▷ We transformed the original optimization problem into
a Partially Observable Markov Decision Process (POMDP)
to address the challenge of high dynamism in the scenario.
Based on MAPPO, we propose the SEC MAPPO method as
the solution strategy to implement cooperative edge caching
among satellites.

▷ We employ the configuration of 1,536 satellites from
Starlink, the largest commercial LEO satellite constellation,
to simulate the dynamics of the constellation. Testing with 53
million content requests collected from IQIYI, our algorithm
exhibits substantial enhancements in cache hit rates and a
notable decrease in average user request latency. These re-
sults corroborate the effectiveness of the proposed method in
practical satellite network scenarios.

II. LOW EARTH ORBIT SATELLITE EDGE CACHING
SYSTEM

A. System Model

In this work, we consider an LEO satellite collaborative
edge caching system shown in Figure 1, which comprises three
main elements:

▷ Multiple User Ends (UEs) with satellite communication
capabilities U = {u1, u2, ..., uN1

}, including but not limited
to mobile phones, vehicles, and drones. And N1 is the total
number of these diversified devices.

▷ A LEO satellite constellation consists of multiple satel-
lites denoted by S = {s1, s2, ..., sN2

}, where N2 is the total
number of the satellite constellation.

▷ A set of existing Inter Satellite Links (ISLs) at time t,
which is denoted by Et = {e1, e2, ..., eNt

3
}. For each ei in set

Et, it consists three components as ei = (sa, sb, ta2b), where
sa and sb are two ends of this ISL and ta2b is the remaining
establishment time of this link. With the fixed orbit parameters,
such ISLs set at time t can be calculated in advance.

Each satellite has limited storage capability to cache popular
contents. When UEs request content through the satellite
network, the request latency can be significantly reduced if the
content has been cached in the access satellite. Unfortunately,
compared with the wide coverage area of the LEO satellite,
its caching capability is relatively insufficient. To resolve this
dilemma, collaborative caching is viewed as a viable approach,
wherein cached content can be shared among neighboring
satellites through ISL. By developing an efficient collaborative
caching method, the storage capability of the whole system can
be utilized and users’ content request delay will be minimized.
To better describe this system, detailed models are illustrated
as follows.

B. Content Caching Model

Let F = {1, 2, ..., NF } denote the set of contents that can
be requested in this system, and all the contents are able to
be derived from the remote cloud center but experience high
latency. Within this caching system, without loss of generality,
all contents are standardized to a uniform unit size of m. This
is achieved by dividing files of varying sizes into multiple sub-
files, each of equal size. As the cached content is refreshed
periodically at each time slot indexed by t ∈ T = {1, 2, .., T},
satellite si generates a cache decision vector at time t as
Xt

i = {xt
i,1, x

t
i,2, ..., x

t
i,NF
}, where xt

i,k = 1 represents
caching content k in satellite si at time slot t, and xt

i,k = 0
otherwise. To satisfy the storage capability constraint, the
cache decision vector needs to meet the following conditions:∑

f∈F

mxt
s,f ≤Ms,∀s ∈ S, t ∈ T , (1)

where m is the size of each content and Ms is the storage
capability of satellite s.

C. Service Model

In each time slot t, we use Rt to represent the UEs request
set. To be specific, rtb,f = 1 means UE b requests content f
during the time slot t, and rtb,f = 0 otherwise. In the proposed
collaborative caching system, UEs’ requests can be satisfied
in three ways according to the satellites’ cache status:

• Direct Hit Mode (DHM): In the direct hit mode, UE’s
requested content is cached in the access satellite, which
means the satellite can deliver it back to the UE directly
and with the lowest latency. The latency can be calculated
as:

Lt
s(D) =

∑
f∈F

rtb,fx
t
s,fm

vs2b
, (2)

where vs2b is the transmission rate between satellite and
UE. vs2b can be calculated according to Shannon Theory
[10] which is related to transmit and receive power
consumption at both ends. As power allocation is not
addressed in this work, all UEs within the coverage area
of satellite s enjoy the same transmission rate.

• Neighbor Hit Mode (NHM): Neighbor hit mode is
chosen only when the direct access satellite does not
cache the corresponding content. Through the existing
ISLs, content can be derived from the neighbor satellites
of satellite s. Therefore, the total transmission latency is
denoted as:

Lt
s(N) =

∑
f∈F

(
rtb,fm

vs2b
+

Dfr
t
b,fx

t
s′,fm

vs2s
), (3)

where satellite s′ is the nearest neighbor satellite cached
content f , Df is the number of hops between satellite
s and s′, vs2s is the transmission rate between satellites
through the ISL. Additionally, Df can be calculated by
the shortest path algorithm with the existing ISLs set Et
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Fig. 1: An illustration of LEO satellite collaborative edge caching system. a) During the training phase, the algorithm encourages cooperation between
satellites by evaluating the quality of actions from a global perspective. b) During the execution phase, each satellite makes caching decisions based on its
local observation to adapt to the dynamic network.

mentioned above, and vs2s can be calculated in the same
way as vs2b.

• Cloud Center Derive Mode (CCDM): When all the
satellites do not cache the content f or the target satellite
is far away from the access satellite, i.e., Df > K, the
system adopts the cloud center derive mode. Compared
with other modes, the cloud center derive mode needs
to fetch the content from the remote cloud center, which
results in much higher latency [11]. Therefore, we use a
constant number to represent the latency of CCDM:

Lt
s(C) = L. (4)

Each request needs to be satisfied in one mode, we use aD, aN
and aC as indicators. The average request latency, which is the
optimization objective, is defined as follows:

Lavg =

∑
t∈T

∑
s∈S

∑
b∈Cs(t)

aDLt
s(D) + aNLt

s(N) + aCL
t
s(C)∑

t∈T

∑
s∈S

∑
b∈Cs(t)

∑
f∈F

rtb,f
,

(5)
and Cs(t) is the coverage area of satellite s at time t.

D. Problem Formulation

To minimize the average content request latency in this LEO
satellite system, we can formulate the objective function with
several constraints as follows:

min Lavg (6)

s.t.
∑
f∈F

mxt
s,f ≤Ms,∀s ∈ S, t ∈ T , (7)

xt
s,f ∈ {0, 1},∀t ∈ T ,∀s ∈ S,∀f ∈ F , (8)

aD + aN + aC = 1, (9)
Df ≤ K, (10)

where (7) ensures the total size of cached contents does
not exceed the satellite’s maximum allowed cache space; (8)
guarantees the legitimacy of cache decision vector; (9) ensures
each request will be handled in exactly one mode and (10)
prevents users from requesting files from distant satellites.
The optimization objective is a classic nonlinear integer pro-
gramming problem, known to be NP-hard, which renders
exact solutions intractable within polynomial time. And single-
agent reinforcement learning method cannot handle high-
dimensional environments well. Consequently, we employ
multi-agent reinforcement learning to efficiently approximate
optimal solutions in this complex and dynamic environment.

III. MAPPO-BASED ALGORITHM FOR LEO SATELLITE
COLLABORATIVE EDGE CACHING

Due to the satellites’ mobility, limited cache capacities, and
the uneven distribution of user requests, traditional offline
optimization methods are not suitable for solving this prob-
lem. Meanwhile, the single-agent deep reinforcement learning
algorithm cannot effectively learn the optimal strategy with
complex observation and action space. Multi-Agent Proximal



Policy Optimization (MAPPO), as an extension of the PPO
algorithm tailored for multi-agent systems, is particularly
well-suited for addressing problems in scenarios characterized
by high-dimensional action and state spaces. Therefore, to
address these challenges, this paper proposes an innovative
collaborative edge caching strategy named SEC MAPPO.

A. POMDP Formulation

Because each satellite cannot observe the entire system’s
state while making caching decisions, we reformulate this
problem as a POMDP. Typically, an MDP contains three
important components, a state space S, an action space A,
and a reward function R. In the multi-agent DRL system, each
agent is able to observe the partial state of the whole system.
Therefore, the global state S is the Cartesian product of all
observation spaces for each agent, S = O1×O2× . . .×ON .
Similarly, action space is the Cartesian product of all agents’
action space, A = A1×A2×. . .×AN , where N is the number
of agents. The entire agent set is denoted as I = {1, 2, ..., N},
and each satellite is considered as an independent agent.

Observation Space: At each time slot t, we define the state
of agent i as:

Oi = (ci(t), ri(t), bi(t), li(t)), (11)

where ci(t) is the cache status of satellite i at time t, ri(t)
is the requests collected by all UEs within the service area of
satellite i, bi(t) is the cache status of neighbor satellites (at
most four) and li(t) represents the link status (at most four),
specifically, the remaining service time of each link.

Action Space: In many related works, researchers prefer to
set the action space as a vector p = (p1, p2, ..., pF ), where pi
is the possibility of caching content i. Such settings combine
the dimension of action space to the dimension of the entire
content library F , which may be extremely large. Therefore,
when agent i encounters a ”miss” content, we formulate the
action space of agent i as:

Ai ∈ {1, 2, ...,Ms}∪{0}∪{Ms+1,Ms+2,Ms+3,Ms+4},
(12)

where Ms is the cache capability of the satellite i. The action
ai ∈ {1, 2, ...,Ms} means the satellite will evict the ai

th con-
tent and store the new content, the action ai ∈ {0} means do
nothing and the action ai ∈ {Ms+1,Ms+2,Ms+3,Ms+4}
means satellite i will send the content to exact one of the
neighbor satellite for caching. Thus, the dimension of action
space is only related to its storage capability, which is much
smaller than the dimension of the entire content library.

Reward Function: To minimize the average request de-
lay, we wish that the network can satisfy as many requests
as possible. Therefore we use the satisfaction of requests
between two adjacent misses to measure the rewards, e.g.,
R = {rMiss

1 , rHit
2 , rHit

3 , ..., rMiss
k }. Additionally, direct satel-

lite hits should obtain larger rewards than neighbor satellite
hits:

Ri =
∑
r∈R

α1 × aD + α2 × aN × e−Dr , (13)

where α1, α2 are constants, aD, aN are mode indicators, and
Dr is the number of hops to deliver the required content for
request r.

B. SEC MAPPO Train Framework

As shown in Algorithm 1, SEC MAPPO is built based
on the multi-agent extension version of the PPO algorithm.
The algorithm adopts an actor-critic framework, where the
actor network is responsible for selecting actions based on the
current policy and the critic network evaluates the potential
value of the actions taken by the actors. For the agent set I =
{1, 2, ..., N}, we use πθ = {πθ1 , πθ2 , ..., πθN } to represent the
actor network for approximating the policy and Vϕ to represent
the shared critic network to approximate the value function.
θ and ϕ are the parameters for actor and critic networks.
At each time step t of the centralized training phase, each
agent i gets the local observation oi,t from the environment
and takes action ai,t according to its actor network. Then the
environment returns the reward ri,t of the action. The global
critic network collects all agents’ actions and gets the new
state st+1. After collecting enough transitions (st, at, rt, st+1)
for the critic network and (oi,t, ai,t, ri,t, oi,t+1) for the actor
networks in replay buffer D, a mini-batch set of data is
sampled for updating actor networks and the critic network.

Following the multi-agent training paradigm, the clipped
objective function for each agent i is:

LCLIP(θi) = Êt

[
min(vt(θi)Ât, clip(vt(θi), 1− ϵ, 1 + ϵ)Ât)

]
,

(14)
where ϵ is the hyper-parameter for clip fraction to avoid the
excessive adjustment of the objective function value and vt(θi)
is the probability ratio of taking action in new policy and old
policy:

vt(θi) =
πθi,t(ai,t|oi,t)
πold
θi,t

(ai,t|oi,t)
, (15)

General advantage estimation Ât measures how good are
current actions regarding the baseline critic value as the
following equation:

Ât =
∞∑
t=0

(γλ)tδVt+l, (16)

where γ and λ are the discount factor and trade-off factor
between bias and variance in the advantage estimate.

The critic network is learned using gradient descent with
the loss function as follows:

LV (ϕ) =
1

|D|n
∑
τ∈D

n∑
i=1

(
Vϕ(si,t)− R̂t

)2

, (17)

where R̂t is the discounted return so far.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
algorithm based on both the synthetically generated Zipf
request dataset and the real dataset from IQIYI with several
baseline algorithms.



Algorithm 1: SEC MAPPO: MAPPO-Based Satellite
Collaborative Edge Caching Alogrithm
Output: Policy networks πθi for i ∈ I

1 Initialize critic network Vϕ(st), actor network πθ and
replay buffer D

2 for Episode e = 1, . . . , E do
3 for Time Step t = 1, . . . , T do
4 Calculate satellites’ coverage area C(t) and

ISLs set Et
5 for Each Agent i = 1, . . . , N do
6 Obtain observation oi,t
7 Choose action ai,t ∼ πθi(ai,t|oi,t, θi)
8 Obtain returned reward ri,t and new

observation oi,t+1 Store transition
D ← D ∪ {(oi,t, ai,t, ri,t, oi,t+1)}

9 end
10 Obtain state st and new state st+1

11 Collect the global reward rt =
∑

i∈N ri,t
12 Store transition D ← D ∪ {(st, at, rt, st+1)}
13 end
14 for Update Phase u = 1, . . . , U do
15 Sample mini-batch B from D
16 Update critic network ϕ← ϕ− β∇ϕLV(ϕ)
17 Update actor networks

θi ← θi + α∇θiL
CLIP(θi)

18 end
19 end

TABLE I: Experiments Setting Parameters

Parameter Value Training Parameter Value
Number of orbits 3 Learning rate 0.0003
Satellites per orbit 3,4,3 Discount factor 0.95
Half cone angle ψ 62° Entropy coefficient 0.01
Orbit inclination 53° Iterations 20000
Orbit height 550km Clip parameter 0.3
Number of video 5000,400000 Batch size 16
Unit size 20 Mb KL coefficient 0.2

A. Experimental Settings

To better understand our proposed algorithm in the real
world, we use Simulation Tool Kits (STK) and Matlab to
build the StarLink constellation as the testbed. We select
three adjacent orbits and 10 satellites in total to simulate the
cooperation between satellites. 936 UEs are distributed along
the satellite trajectory to generate content requests. According
to [12], we set the ISL data transmission rate to 2Gbps and the
GSL data transmission rate to 800Mbps. Other experimental
settings are shown in the Table I.

To fully evaluate the performance of our proposed algo-
rithm, we choose four baseline algorithms: RANDOM (Ran-
dom cache replacement algorithm), LFU (Least frequently
used), LRU (Least recently used) and DQN (Deep Q-learning
based algorithm).
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Fig. 2: The training reward curve of SEC MAPPO algorithm.

B. Convergence Analysis

As shown in Fig.2, the proposed algorithm experienced a
fast learning period at the beginning of the whole process and
became stable after 5000 iterations. After 5000 iterations, the
training reward has consistently maintained at a high level
with slight fluctuations, indicating that the algorithm is still
actively exploring additional strategies within the context of a
good strategy guarantee.
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(b) Average delivery delay with IQIYI dataset

Fig. 3: Average delivery delay.

C. Numerical Result

Figure 3 shows the average delivery delay with different
satellites’ storage capacities from 200MB to 4GB. The results
demonstrate that no matter in the synthetic Zipf dataset or
IQIYI real-world dataset, our proposed SEC MAPPO algo-
rithm outperforms other baseline solutions. Referencing Figure
3a, it becomes evident that our algorithm shows enhanced
performance with the Zipf dataset, particularly when dealing
with either very small (200MB) or relatively large (4GB)
storage capacities. The efficiency of the proposed caching



(a) Total Hit Ratio with Zipf Dataset (b) Total Hit Ratio with IQIYI Dataset

(c) Neighbor Hit Ratio with Zipf Dataset (d) Neighbor Hit Ratio with IQIYI Dataset

Fig. 4: The performance of SEC MAPPO algorithm. (a) & (b) show
SEC MAPPO obtains the highest total hit ratio in both Zipf and
IQIYI datasets. (c) & (d) show SEC MAPPO facilitates collaboration
between satellites through a higher neighbor hit ratio.

method can be quantified by the notable reduction in average
latency. Specifically, it achieved a reduction of 20.6% (for
200MB storage capacity) and 8.5% (for 4GB storage capacity)
compared to LFU. Similarly, when compared to LRU, RAN-
DOM, and DQN methods, the reduction in average latency
was 11.7%, 12.4%, and 8.1% (for 200MB), and 9.3%, 8.4%,
and 5.3% (for 4GB) respectively.

In the IQIYI real-world dataset, our algorithm has demon-
strated significant superiority over other baseline algorithms
in all scenarios. Specifically, when the cache capacity is set at
1GB per satellite, our algorithm achieves a remarkable reduc-
tion in average latency compared to LFU, LRU, RANDOM,
and DQN. The reductions are measured at 14.8%, 3.0%, 5.7%,
and 2.2% respectively. Notably, our findings indicate that LFU
performs the poorest among all solutions when facing dynamic
and complex video request patterns in real-world scenarios.

Lastly, we use the total cache hit ratio and neighbor hit mode
(NHM) cache hit ratio to measure the level of collaboration
between satellites. The overall cache hit ratio exhibits a direct
correlation with the average delivery delay, indicating that
a higher cache hit ratio typically results in lower delivery
latency. As shown in Figure 4a and 4b, the SEC MAPPO
algorithm achieves the highest hit ratio in both Zipf and IQIYI
datasets. Although the margin of superiority diminishes as
storage capacity increases, the results still demonstrate the
effectiveness of our algorithm.

In the Zipf dataset, each satellite experiences distinct con-
tent request patterns. Excluding the RANDOM algorithm,
our algorithm demonstrates a higher level of collaboration
between satellites, for example, SEC MAPPO achieves 25.2%
compared to LFU with 7.47%, LRU with 9.94%, and DQN
with 16.55% when cache capacity is 1GB per satellite. The

reason why the RANDOM algorithm can obtain a higher
NHM cache hit ratio with a smaller cache capacity is due
to the randomness of its cache replacement, while other
algorithms strive to ensure the performance of cache hits by
sensing the request pattern, so it is difficult to achieve efficient
cooperation between regions with completely different request
patterns. While with the IQIYI dataset, our proposed algorithm
maintains a significant lead in the NHM cache hit ratio metric,
corroborating the effectiveness of our approach in enhancing
cache collaboration among neighboring satellites.

V. CONCLUSION

In this paper, we formulate the edge caching problem in
the LEO satellite network. To minimize the average content
request latency, we further transmit the original optimization
problem into a multi-agent decision process. To obtain the op-
timal solution, we propose an algorithm SEC MAPPO using
multi-agent reinforcement learning. The results obtained from
both synthetic and real-world datasets validate our method’s
ability to reduce the average video content request latency.
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